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Abstract

We consider a two-dimensional spring-mass lattice with square symmetry in
which each particle experiences a nonlinear onsite potential and nonlinear
nearest-neighbour interactions. At equilibrium, the particles are equally spaced
in both the horizontal and vertical directions and all springs are unextended.
Motivated by the work of Marin et al (1998 Phys. Lett. A 248 225–9, 2001
Phys. Lett. A 281 21–5), we seek a solution in which most of the breather’s
energy is focused along three chains. We construct an asymptotic approxima-
tion to the breather using the method of multiple scales to describe the coherent
oscillations in the three main chains that constitute the discrete breather. We
reduce the equation of motion to a nonlinear Schrödinger equation for the
leading-order term and find a family of solutions, which encompasses both
stationary and moving bright soliton solutions. We use numerical simulations
of the lattice to verify the shape and velocity of breathers and find that while
stationary breathers are found to persist for long times, moving breathers
decay by radiating energy in the direction perpendicular to their motion.

PACS numbers: 05.45.−a, 05.45.Yv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Discrete breathers are time-periodic, spatially localized solutions of nonlinear lattices.
Necessary conditions for the existence of discrete breathers in a lattice are the discreteness
of the lattice, which gives rise to gaps and cut-offs in the phonon spectrum, paired with its
nonlinearity. Furthermore, a breather’s frequency (and that of its harmonics) must avoid
resonances with the phonon band in order for the breather to be long-lived.

There is a great deal of work on discrete breathers. Early work on higher dimensional
systems includes that of Takeno [27, 28], who finds approximations to breather solutions in
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one-, two- and three-dimensional lattices by applying Green’s function techniques. This
led to an approximate analytical expression for the dispersion relation of the breathers.
Supplementary work by Campbell and co-authors [8, 9] gives a simplified argument for
the existence of breathers and their stability against decay in Klein–Gordon lattices. The
rotating-wave approximation has frequently been applied to lattice systems (see, e.g.,
[8, 9, 29–31]). Using this method, only terms that are resonant with the fundamental frequency
of the breather are retained. As error terms and higher harmonics are neglected, it is difficult
to quantify the accuracy of the method. The frequency of the discrete breather, denoted by
ωb, is dependent on the amplitude of the breather. Denoting the wavenumber of a phonon by
q and its temporal frequency by ωq , the condition for the breather to be long-lived is that the
frequency of the breather (ωb) must be nonresonant with the phonon spectrum (ωq), that is,
ωq/ωb is never a rational number.

There are many results on the existence of discrete breathers in various one-dimensional
Hamiltonian lattices of Fermi–Pasta–Ulam–Tsingou (FPUT) and Klein–Gordon (KG) types.
Numerical results strongly imply the existence of discrete breathers in such one-dimensional
non-integrable Hamiltonian lattices. Flach, Willis and Kladko investigated the origins and
features of localized excitations in Klein–Gordon lattices; see [14–17] where it is suggested
that the FPUT lattice could indeed support breathers. Moreover, the theory described in
[14, 15] holds independently of the lattice dimension, and it is deduced that the existence
of nonlinear localized excitation solutions in one-dimensional lattices can be extended to
nonlinear localized excitations in higher dimensional lattices.

MacKay and Aubry [20] then established the existence of stationary breathers in a
broad range of lattice models, starting with a one-dimensional Hamiltonian lattice with linear
coupling between nearest neighbours and a nonlinear onsite potential of the KG type. The proof
considers the anti-continuum limit where the model reduces to a discrete array of uncoupled
anharmonic oscillators, where analytical breathers can be found exactly. Using the inverse
theorem, it is then argued that discrete breathers can exist when a weak coupling is present.
Moreover, MacKay and Aubry [20] point out that the breathers are exponentially stable, that
is, Nekhoroshev-stable. This form of stability means that if an orbit starts within a distance
ε of a breather orbit, the trajectory will stay within O(ε) for at least a time C exp(−K/εB)

for some positive constants C, K and β. This result has been confirmed by Bambusi [3].
Furthermore, Aubry and Cretegny [2] have shown the existence of a marginal mode which
grows linearly in time at any instability threshold, resulting in a necessary condition for having
a highly mobile breather.

According to Flach et al [13], breather energies have a positive lower bound if the lattice
dimension is greater than or equal to a certain critical value dc. Such dc depends on the type of
nonlinearity present in the system, the dimension of the lattice typically being no more than
2. In dimensions below dc, as the amplitude of breather tends to zero, the breather’s energy
approaches zero as its amplitude decreases to zero. At critical dimension dc, breather energies
will approach a positive value E0 as the amplitude tends to zero. Furthermore, there are no
breathers with energies E in the range 0 < E < E0 (in other words, there exists a forbidden
gap between 0 and E0). However, for dimensions above dc, breather energies tend to increase
as the amplitude of breather tends to zero.

In this paper, we ultimately consider a system of three coupled one-dimensional lattices.
Models of this form have been considered previously, most notably in the biological arena
where they are used to model DNA dynamics. These were pioneered in the late 1980s by a
variety of authors, for example [10, 18, 24, 32–34], and have been followed up by others more
recently [4]. These models typically consider two degrees of freedom per base pair: one radial
variable related to the opening of the hydrogen bonds and an angular one related to the twisting
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of each base pair relative to the helicoidal structure of the molecule. Analytical approximations
for the small amplitude breather are derived by applying the Lagrangian method. And they
have numerically checked that the solution of the breather they obtained are stable for long
periods of time.

An interesting phenomenon that may be related to breathers can be found in crystals of
muscovite mica: the presence of dark lines, which cannot be explained in terms of changed
particle tracks. This inspired the investigations of Marin et al [21], who conjecture that
these lines might be caused by mobile localized breathers of the longitudinal type. By using
numerical simulations and experiments on an analogue model, they tested their conjecture.
Their results show that mobile longitudinal breathers do exist, and their existence does not
require a special shape for the potential or a constrained range of parameters. Moreover, the
lattice exhibits a strong directional preference whereby breathers travel for long distances only
along lattice directions. Recently, some investigators found that reconstructive transformations
in layer silicates can happen at a much lower temperature than the experimental results
reported previously. The reason for this phenomenon is given by Archilla et al [1], who claim
that discrete breathers can play an important role in reconstructive transformations at low
temperatures. To verify this, they obtain their parameters for a model of nonlinear vibrations
in the cation layer and, through numerical simulations, obtain an expression for the breather’s
energy. Though there are far fewer breathers than phonons, the energy from breathers is large
enough to influence the experimental results.

Butt and Wattis [5, 6] subsequently considered two-dimensional square and hexagonal
FPUT lattices with a scalar-valued function at each node and derived small amplitude
approximations to discrete breathers in the models. They showed that the lattice equation
can be reduced to a cubic nonlinear Schrödinger (NLS) equation in two special cases:
the symmetric and asymmetric interaction potential cases. For symmetric interactions, an
associated ellipticity constraint was found, i.e. moving breathers only occur for certain wave-
vectors. Butt and Wattis [5, 6] also extended the small amplitude expansion to fifth order and
derived a higher order NLS equation which more accurately describes the shape and stability
properties of the breather envelope in the case of stationary breathers in symmetric potentials.

In this paper, we also consider a two-dimensional monatomic spring-mass lattice with
square symmetry. We use interaction potentials that correspond to small amplitude expansions
of those used by Marin et al in [22, 23]; however, the geometry of our lattice is slightly simpler
than the monatomic hexagonal symmetry of [22] and the diatomic square lattice of [23]. In
section 2, we apply the semi-discrete multiple-scales method to reduce the governing equations
to a nonlinear Schrödinger equation at the leading order. From the result, we find a group
of solutions which encompasses both stationary and moving bright soliton solutions. Our
analysis shows how the cubic and quartic coefficients in the potential energy function, and
the wavenumber of the carrier wave, determine the type of solution. In section 3, we present
numerical simulations of such lattices showing that the asymptotically derived modes are
indeed long-lived. Finally, we make some general comments on these results and discuss
future work.

2. Asymptotic analysis

2.1. Preliminaries

We consider a two-dimensional spring-mass system with square symmetry. The system is
constructed from a repeated arrangement of identical particles of unit mass, with the distance
between two adjacent particles being h in each direction. Here, we assume that each particle
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experiences a nonlinear onsite potential. At equilibrium the particles are spaced regularly in
both horizontal and vertical directions, with all the springs unextended. We select an arbitrary
site to be site (0, 0) and remaining sites are labelled using the lattice basis vectors i = [1, 0]T ,
j = [0, 1]T . We describe the position of the particle at site (m, n) = mi + nj by the vector
(um,n(t), vm,n(t)); this expresses the displacement of the particle from its equilibrium position.

We want to derive an expression for the total energy H of the lattice. First, we assume
that the onsite potential V0 of every particle is of the form

V0(r) = 1
2�2r2 + 1

4λr4, (2.1)

where � and λ are material constants of the spring and r =
√

u2
m,n + v2

m,n denotes the magnitude

of the displacement of each particle from its equilibrium position. Second, we assume that the
elastic potential energy Vs stored by each spring has the form

Vs = 1
2φ2 + 1

3aφ3 + 1
4bφ4, (2.2)

where φ is the extension of the spring. For the horizontal and the vertical springs, the extension
is respectively expressed as

φh =
√

(h + um+1,n − um,n)2 + (vm+1,n − vm,n)2, (2.3)

φv =
√

(um+1,n − um,n)2 + (h + vm+1,n − vm,n)2, (2.4)

as illustrated in figure 1.

2.2. Hamiltonian formulation and equations of motion of the FPUT–KG lattices

The total energy of the system, H, is defined by the sum of the kinetic energies of every
particle, the energy due to the springs and the onsite potential energies. Thus,

H =
∑
m

∑
n

1

2
u̇2

m,n +
1

2
v̇2

m,n + V0
(√

u2
m,n + v2

m,n

)
+ Vs(‖(um+1,n, vm+1,n) − (um,n, vm,n)‖)

+ Vs(‖(um,n+1, vm,n+1) − (um,n, vm,n)‖), (2.5)

where ‖ · ‖ means the distance between the two corresponding particles.
Marin et al [21–23] suggest that breathers can be localized, and the moving disturbance

is very narrow in the direction perpendicular to the direction of travel. In line with this
observation, we seek solutions in which u and v are much smaller than unity apart from in
three main chains, i.e. we focus on one main, or central, chain n = 0 and two side chains
n = ±1 (see figure 1(b)). Thus, we need equations for the six coupled lattices um,0, um,±1,
vm,0, vm,±1.

We now discuss how to obtain the equations of motion for the displacements of these
three chains for this spring-mass system. We assume that there is a mode in which the main
chain oscillates purely in the horizontal direction, that is, um,0 �= 0, vm,0 = 0. Then the
chains at positions n = 1, n = −1 should be related by symmetry, with um,−1 = um,1 and
vm,−1 = −vm,1.

First, we derive the main-chain energy H0, the n = 0 term in the sum in (2.5). Later, we
will assume that um,0, um,±1 are an order of magnitude larger than vm,±1 (see section 2.3 for
the specific ansatz used). Applying Hamilton’s principle to (2.5) gives equations of motion
for the three chains um,0, um,1, vm,1:
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(a) (b)

Figure 1. (a) The spring connecting particles Pm,n and Pm+1,n at general time t. (b) Illustration of
the main chain n = 0 (central row) and side chains n = ±1 (top and bottom rows).

üm,0 = −�2um,0 − λu3
m,0 + (um+1,0 − 2um,0 + um−1,0) +

2

h
(um,1 − um,0)vm,1

+
1

h2
(um,1 − um,0)

3 + a
[
u2

m+1,0 − 2um+1um,0 + 2um−1,0um,0 − u2
m−1,0

]
+

2ah−2

h2
v2

m,1(um,1−um,0) + b[(um+1,0−um,0)
3 − (um,0−um−1,0)

3], (2.6)

üm,1 = −�2um,1 − λ
(
u2

m,1 + v2
m,1

)
um,1 + (um+1,1 − 2um,1 + um−1,1)

+
1

2h
[(vm+1,1 − vm,1)

2 − (vm,1 − vm−1,1)
2] +

1

h
um,0vm,1

+
1

2h2
[(um,2 − um,1)

3 − (um,1 − um,0)
3]

+ a
[
u2

m+1,1 − 2um+1,1um,1 + 2um−1,1um,1 − u2
m−1,1

]
+

ah−1

h2
[(vm+1,1−vm,1)

2(um+1,1−um,1) − (vm,1−vm−1,1)
2(um,1−um−1,1)]

+ b[(um+1,1 − um,1)
3 − (um,1 − um−1,1)

3], (2.7)

v̈m,1 = −�2vm,1 − λ
(
u2

m,1 + v2
m,1

)
vm,1 − 2vm,1 +

1

2h

(
2um,1um,0 − u2

m,0

)
+ 2bv3

m,1

+
1

h
[(vm+1,1 − vm,1)(um+1,1 − um,1) − (vm,1 − vm−1,1)(um,1 − um−1,1)]

+
1

2h2
[(vm+1,1 − vm,1)

3 − (vm,1 − vm−1,1)
3]

− ah − 1

h2

[
u2

m,1vm,1 − (um,1 − um,0)
2vm,1

]
+

ah − 1

h2

× [(um+1,1 − um,1)
2(vm+1,1 − vm,1) − (um,1 − um−1,1)

2(vm,1 − vm−1,1)]. (2.8)
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2.3. Asymptotic analysis

We seek small-amplitude breather solutions of (2.6)–(2.8) by applying the semi-discrete
multiple-scales method. We introduce new spatial and temporal variables defined by X = εm,
τ = εt and T = ε2t , and consider the displacement parameters um,0, um,1 and vm,1 to be
functions of the independent variables n, t, X, τ and T, of the form

um,0(t) = ε eiψF + ε2G0 + ε2 eiψG1 + ε2 e2iψG2 + ε3H0 + ε3 eiψH1 + ε3 e2iψH2

+ ε3e3iψH3 + · · · + c.c., (2.9)

um,1(t) = ε eiψP + ε2P0 + ε2 eiψP1 + ε2 e2iψP2 + ε3R0 + ε3 eiψR1 + ε3 e2iψR2

+ ε3 e3iψR3 + · · · + c.c., (2.10)

vm,1(t) = ε2Q0 + ε2 eiψQ1 + ε2 e2iψQ2 + ε3S0 + ε3 eiψS1 + ε3 e2iψS2

+ ε3 e3iψS3 + · · · + c.c., (2.11)

where ψ = km + ωt , ω and k are the frequency and wavenumber (respectively) of the linear
carrier wave, c.c. denotes the complex conjugate and F, Gi, P, etc, are all functions of X, τ

and T. Since the imaginary parts of G0, P0, Q0, H0, R0 and S0 do not influence um,0, um,1 and
vm,1, we will assume that these quantities are real. Substituting ansatzë (2.9)–(2.11) into the
equations of motion (2.6)–(2.8) and equating the coefficients of each harmonic in ψ at each
order of ε yield equations for the unknown functions in (2.9)–(2.11).

From the O(ε eiψ) terms of um,0 (equation (2.6)), we obtain the dispersion relation

ω =
√

4 sin2
(

1
2k

)
+ �2. (2.12)

From the O(ε2) terms of (2.6), we obtain 0 = −�2(G0 + G0); thus, G0 ≡ 0.
The order O(ε2 eiψ) terms of equation (2.6) yields

2iωFτ − ω2G1 = 2i sin kFX − (
4 sin2 (

1
2k

)
+ �2)G1; (2.13)

after cancelling the G1 terms due to (2.12), the resulting wave equation is solved by

F(X, τ, T ) = F(Z, T ), where v = − sin k

ω
= − sin k√

4 sin2
(

1
2k

)
+ �2

. (2.14)

The O(ε2 e2iψ) terms of equation (2.6) yield an expression for G2:

G2 = 16ia sin3
(

1
2k

)
cos

(
1
2k

)
F 2

�2 + 4 sin2 k − 4ω2
. (2.15)

The O(ε3) terms of equation (2.6) give

0 = (P − F)Q1 + (P − F)Q1. (2.16)

Next, the O(ε3 eiψ) terms of equation (2.6) give

2iωFT + Fττ + 2iωG1τ = −3λ|F |2F +
3

h2
(|P |2P − P 2F + F 2P − |F |2F)

+
2

h
[(P − F)(Q0 + Q0) + (P − F)Q2] − 6b(cos(2k) − 4 cos k + 3)|F |2F

+ FXX cos k + 2iG1X sin k + 4aiFG2 sin k. (2.17)

We anticipate that (2.17) will reduce to a NLS in the variable F on elimination of the other
unknown variables, G2 being given by (2.15). We assume that G1 represents a perturbation
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travelling at the same velocity as F, so that G1(X, τ, T ) = G1(Z, T ), where Z = X − vτ .
Then, by (2.14), the terms involving G1 disappear from (2.17). It remains to eliminate P, Q0

and Q2 from (2.17), which requires consideration of equations (2.7) and (2.8).
From the orderO(ε2 eiψ) terms of (2.7), we obtain the dispersion relation (2.12) calculated

earlier. The O(ε2) terms of equation (2.7) yield 0 = −�2(P0 + P 0); thus, P0 ≡ 0. The
O(ε2 eiψ) terms of equation (2.7) give Pτ = −vPX, with v as in (2.14). Hence P, like F, is
also a travelling wave with velocity v. The O(ε2 e2iψ) terms of equation (2.7) give

P2 = 16ia sin3
(

1
2k

)
cos

(
1
2k

)
P 2

�2 + 4 sin2 k − 4ω2
. (2.18)

The O(ε3) terms of equation (2.7) give the relation

0 = FQ1 + FQ1, (2.19)

that is, Re(FQ1) = 0. Combining (2.19) and (2.16), we see that PQ1 = −PQ1. One
possibility is clearly Q1 = 0; otherwise PQ1 = i α, FQ1 = i β for some α, β ∈ R. Then
P = α F/β and Q1 = i β/F . The latter of these is not possible since it implies Q1 → ∞, as
X → ±∞, where F → 0. Hence, we deduce Q1 = 0.

Next, the O(ε3eiψ) terms of equation (2.7) give

2iωPT + Pττ + 2iωP1τ = −3λ|P |2P +
1

h
[F(Q0 + Q0) + FQ2]

+
3

2h2
(P 2F − F 2P + |F |2F) + PXX cos k + 4aiPP2 sin k.

− 6b(cos(2k) − 4 cos k + 3)|P |2P + 2iP1X sin k. (2.20)

As with equation (2.17), due to the presence of Q2 and Q0 we cannot immediately simplify
(2.20). To find how Q0 and Q2 are related to P and F, we consider the equation of motion (2.8)
for vm,1. The O(ε2) terms of equation (2.8) yield

Q0 + Q0 = 1

2h

FP + FP − |F |2
�2 + 2

, (2.21)

while the O(ε2 eiψ) terms give

ω2Q1 = (�2 + 2)Q1, (2.22)

so that either ω2 = �2 +2 or Q1 ≡ 0. If the former holds, then from the previous result (2.12),
we obtain sin2

(
1
2k

) = 1
2 which implies that k = ±π

4 ,± 3π
4 . This result is unexpected as

we obtain only certain discrete wavenumbers instead of a one-parameter family of solutions.
Thus, we retain the latter possibility Q1 ≡ 0. Going further to the O(ε2 e2iψ) terms in
equation (2.8) gives (using also (2.12))

Q2 = 2FP − F 2

2h
(
3�2 + 16 sin2

(
1
2k

) − 2
) . (2.23)

2.4. Coupled NLS equations

We assume P(X, τ, T ) = P(Z, T ) and P1(X, τ, T ) = P1(Z, T ); then we substitute G0 = 0,
(2.15), (2.18), P0 = 0, (2.21) and (2.23) into (2.17) and (2.20) to derive the following system
of coupled NLS equations, the O(ε3eiψ) terms in terms of F equation give

2iωFT =
(

sin2 k

�2 + 4 sin2
(

1
2k

) − cos k

)
FZZ − 3λ|F |2F +

3

h2
(|P |2P − P 2F + F 2P − |F |2F)

7
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+
1

h

(
F |P |2 + FP 2 − 2|F |2P − F 2P + |F |2F

�2 + 2

+
2F |P |2 − PF 2 − 2|F |2P + |F |2F

3�2 + 16 sin2
(

1
2k

) − 2

)

− 6b(cos(2k) − 4 cos k + 3)|F |2F − 64a2 sin k sin3
(

1
2k

)
cos

(
1
2k

)
�2 + 4 sin2 k − 4ω2

|F |2F (2.24)

and the O(ε3eiψ) terms in terms of P equation give

2iωPT =
(

sin2 k

�2 + 4 sin2
(

1
2k

) − cos k

)
PZZ − 3λ|P |2P +

3

2h2
(P 2F − F 2P + |F |2F)

+
1

2h2

(
F 2P + |F |2P − |F |2F

�2 + 2
+

2|F |2P − |F |2F
3�2 + 4 sin2 k − 4ω2

)

− 6b(cos(2k) − 4 cos k + 3)|P |2P − 64a2 sin k sin3
(

1
2k

)
cos

(
1
2k

)
�2 + 4 sin2 k − 4ω2

|P |2P. (2.25)

Finding explicit solutions to equations (2.24) and (2.25) is considerably more difficult than
solving the more commonly studied coupled system

iut + uxx + (|u|2 + α|v|2)u = 0, ivt + vxx + (α|u|2 + |v|2)v = 0. (2.26)

In order to simplify the problem (2.24) and (2.25), we make the ansatz P = γF , and
hence we obtain, from (2.21) and (2.23),

Q0 = (2γ − 1)|F |2
h(�2 + 2)

, Q2 = (1 − 2γ )F 2

2h
(
3�2 + 16 sin2

(
1
2k

) − 2
) . (2.27)

Substituting expressions (2.27) into (2.17) then finally yields the NLS equation for F:

iFT + DFZZ + E|F |2F = 0, (2.28)

with

D =
(

sin2 k

�2 + 4 sin2
(

1
2k

) − cos k

)/ (
2

√
�2 + 4 sin2

(
1

2
k

))
, (2.29)

E = −
[

3

h2
(γ 3 − γ 2 + γ − 1)− 3λ +

2(2γ 2−3γ + 1)

h2

(
1

�2 + 2
− 1

6�2 + 32 sin2
(

1
2k

) − 4

)

− 8a(2 − cos k) sin2 k

3�2 + 12 sin2
(

1
2k

) − 6b(cos(2k) − 4 cos k + 3)

]/ (
2

√
�2 + 4 sin2

(
1

2
k

))
.

(2.30)

Provided DE > 0, (2.28) admits a family of bright soliton solutions of the form

F = A sech

(
AZ

√
E

2D

)
exp

(
iEA2T

2

)
, (2.31)

where the amplitude A is a free parameter. The corresponding solution for um,0, to second
order in ε, is

um,0 = 2εAsech

⎡
⎣εA

√
E

2D

⎛
⎝m +

t sin k√
4 sin2

(
1
2k

)
+ �2

⎞
⎠

⎤
⎦ cos(JF t + km)

8
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+ 2aε2A2csc2

(
1

2
k

)
sech2

⎡
⎣εA

√
E

2D

⎛
⎝m +

t sin k√
4 sin2

(
1
2k

)
+ �2

⎞
⎠

⎤
⎦

×
(

cos2

(
1

2
k

)
cos(2JF t + 2km) − 1

)
+ O(ε3), (2.32)

where JF =
√

4 sin2(k/2) + �2 + EA2ε2/2. The displacements vm,1 can also then be found
as

vm,1 = (1 − 2γ )

h
ε2A2sech2

⎡
⎣εA

√
E

2D

⎛
⎝m +

t sin k√
4 sin2

(
1
2k

)
+ �2

⎞
⎠

⎤
⎦

×
[

−1

�2 + 2
+

cos(2JF t + 2km)(
6�2 + 32 sin2

(
1
2k

) − 4
)
]

. (2.33)

2.5. Equation for proportionality constant γ

For the displacements um,1, we need the solution P of (2.25). We assume that P is also a bright
soliton solution of NLS (2.25) with the same velocity as F, of the form P(X, τ, T ) = P(Z, T ).
We also write P1(X, τ, T ) = P1(Z, T ) since P1 represents a travelling-wave perturbation with
the same velocity as F, where, as before, Z = X − vτ and v is given by (2.14). As with
G1 in equation (2.17), this ansatz causes P1 to cancel in equation (2.20). Using (2.18) and
F = P/γ , we obtain the NLS equation

iPT + DPZZ + M|P |2P = 0, (2.34)

with

M = −
[
−3λ +

3

2h2

(
1

γ 2
− 1

γ
+ 1

)
− 6b(cos(2k) − 4 cos k + 3)

+
1

h2

(
1

γ 3
− 2

γ 2

)(
− 1

�2 + 2
+

1

6�2 + 32 sin2
(

1
2k

) − 4

)

− 8a(2 − cos k) sin k

3�2 + 12 sin2
(

1
2k

)
]/ (

2
√

�2 + 4 sin2
(

1
2k

))
. (2.35)

Because of the relation between F and P, i.e. P = γF , we require for consistency

E = γ 2M, γ ∈ R, (2.36)

where E appears in the NLS (2.28) for F and is defined by (2.33) and M appears in the NLS
(2.34) for P and is defined by (2.35). This can be rewritten as

0 = 3λ +
3

2h2

(
3 − 3γ + 3γ 2 − 2γ 3

1 − γ 2

)
+ 48b sin4( 1

2k
)

+
8a(2 − cos k) sin2 k

3�2 + 12 sin2
(

1
2k

)
− (4γ 3 − 6γ 2 + 1)

h2γ (1 − γ 2)

(
1

�2 + 2
− 1

6�2 + 32 sin2
(

1
2k

) − 4

)
. (2.37)

Equation (2.37) is effectively a quartic polynomial in γ , so we cannot easily obtain an explicit
expression for γ . To simplify the problem slightly, we choose a = 0 and keep b �= 0 in
expression (2.2) for the nonlinear nearest-neighbour interactions.

9
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In order to find solutions in which the greatest displacements from equilibrium occur on
the row n = 0, we aim to find solutions with |γ | < 1 small. To investigate the possibility that
γ is very small, we eliminate the γ 2, γ 3, γ 4 terms from (2.37), yielding the approximation[

3λ + 48b sin4

(
1

2
k

)
+

9

2h2

]
γ = 1

(�2 + 2)h2
− 1(

6�2 + 32 sin2
(

1
2k

) − 4
)
h2

. (2.38)

Small values of γ can be caused by any of �, λ, h or b being large.
When γ is positive (0 < γ < 1), we describe the breather oscillations as ‘in-phase’. This

means that particles in the side chains move in the same direction as those in the main chain.
If they move in the opposite direction, we refer the oscillation as ‘out-of-phase’; this occurs
when γ is negative (−1 < γ < 0).

2.6. Stationary breathers in the limit � � 1

In order to consider cases where γ is small, we use (2.38) and take � � 1 with B, h, λ all
being O(1) (and in particular ε 	 γ 	 1).

We know that the NLS equation (2.28) for F admits bright soliton solutions if the
coefficients D and E are of the same sign and dark soliton solutions if D and E are of
opposite sign [26]. In our case, due to the complexity of the expressions for D and E, it is
difficult in general to define the region in k-space where DE > 0. It is more sensible to
analyse a variety of cases, and we start with the case of stationary breathers, for which the
wavenumber is k = π .

For k = π , equation (2.29) gives Dπ = 1/(2
√

�2 + 4) which is always positive. We need
to clarify which combinations of parameters (�, a, b, λ, h, k and γ ) make D and E have the
same sign, and hence give rise to a bright breather solution. In our analysis, we assume γ to
be real. For k = π , because γ is assumed to be small and we consider � to be large (� � 1),
the leading order expression for E using (2.30) is

Eπ ∼ 3

2�

(
λ +

1

h2
+ 16b

)
. (2.39)

Thus, for Eπ > 0, we require

b > − 1

16

(
1

h2
+ λ

)
, (2.40)

and stationary bright breather solutions (with k = π ) only exist when (2.40) holds.

2.7. Moving breathers in the limit � � 1

Next, we seek a moving bright breather solution, with k < π . Rearranging expressions (2.29)
and (2.30) for D and E gives, at leading order,

Dk ∼ −cos k

2�
, Ek ∼ 3

2�

(
λ +

1

h2
+ 16b sin4

(
1

2
k

))
. (2.41)

Clearly, Dk is small for all k and changes sign near k = π/2, it being positive for
π/2 < k < π . In this region of k, a positive Ek requires

b > − 1

16 sin4
(

1
2k

) (
λ +

1

h2

)
. (2.42)

For b > 0, λ > −1/h2, we have Ek > 0 for all k and bright breathers exist for the range
π > k > kc ∼ 1

2π . However, if λ < −1/h2 then E0 < 0 and we have Ek > 0 for π > k > k0

10
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Figure 2. The left plot illustrates how the coefficients D and E change with the wavenumber k
when 0 < k0 < π/2. The dashed line represents those regions in which D and E have opposing
signs. This happens when k0 < k < π/2 and in these regions, it is not possible to find a bright
soliton solution. The right plot covers the case π/2 < k0 < π . Here, there is no bright soliton
solution when π/2 < k < k0.

and Ek < 0 for 0 < k < k0 (for some k0). In this case, there are two ranges of k in which
bright breathers exist. If, in addition to (2.42), k0 < π/2, then the ranges are 0 < k < k0 and
π/2 < k < π .

If k0 > π/2, then the ranges are 0 < k < π/2 and k0 < k < π . These two scenarios
are illustrated in figure 2. The curves for Dk and Ek are solid for those wavenumbers where
DkEk > 0 (where bright breathers exist) and dashed where DkEk < 0. From (2.41), the
critical wavenumber k0 is given by

k0 ∼ 2 sin−1

( −1

16b

(
λ +

1

h2

))1/4

. (2.43)

The other cases that we should note are as follows: (i) where Ek < 0 for all k (which
occurs, for example, when b < 0 and λ < −1/h2), leading to the existence of bright breathers
only for k < π/2 and not for π/2 < k < π , and (ii) where E0 > 0 and Eπ < 0 (for example,
when b < −(λ + 1/h2)/16 and λ > −1/h2), in which case there is a range of k values
between k0 and π/2 for which there are moving bright breathers, but none for k in the intervals
(0, min(k0, π/2)) or (max(k0, π/2), π).

2.8. Asymptotic estimate for breather energy

In this section we use our solution for um,0, um,1 and vm,1 (as given by (2.32), um,1 ∼ γ um,0

and (2.33)) to find a leading-order estimate for the main-chain energy H0 and the side-chain
energy H1, as defined by (A.1) and (A.2) respectively.

Defining θ = JF t + km, we sum the kinetic and potential energies (both onsite and
nearest-neighbour terms) to find the leading-order total energy of the central chain:

H0 ∼ (2A)2

2
ε2

∑
m

sech2

⎡
⎣εA

√
E

2D

⎛
⎝m +

t sin k√
4 sin2

(
1
2k

)
+ �2

⎞
⎠

⎤
⎦

× [
J 2

F sin2 θ + (cos k − 1)2 cos2 θ + sin2 k sin2 θ

− sin k(cos k − 1) sin θ cos θ + �2 cos2 θ
]

+ O(ε3). (2.44)
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We define α = 2A and β = A

√
E

2D
, and use the results

1

m

∑
m

cos2(km) = 〈cos2(km)〉 = 1

2
,

1

m

∑
m

sin2(km) = 〈sin2(km)〉 = 1

2
,

(2.45)

∞∑
m=−∞

sin(2θ)sech2

⎡
⎣εβ

⎛
⎝m +

t sin k√
4 sin2

(
k
2

)
+ �2

⎞
⎠

⎤
⎦ = 0, (2.46)

which follow from averaging and symmetry arguments, to transform (2.44) into

H0 ∼ 2εA

√
2D

E

(
�2 + J 2

F + 4 sin2

(
1

2
k

))
. (2.47)

Since P = γ F and um,1 ∼ γ um,0, the expression for the energy in the side chain (A.2)
implies

H1 ∼ (2A)2

2
γ 2ε2

∑
m

sech2

⎡
⎣εA

√
E

2D

⎛
⎝m +

t sin k√
4 sin2

(
k
2

)
+ �2

⎞
⎠

⎤
⎦

× [
J 2

F sin2 θ + (cos k − 1)2 cos2 θ + sin2 k sin2 θ

− sin k(cos k − 1) sin θ cos θ + �2 cos2 θ
]

+ O(ε3), (2.48)

which can be simplified to

H1 ∼ 2εAγ 2

√
2D

E

(
�2 + J 2

F + 2 − 2 cos k
)
. (2.49)

In the following section, these asymptotic estimates will be compared to the results of numerical
simulations of stationary and moving breathers.

3. Results of numerical simulations

3.1. Initial conditions, boundary conditions and cell energy

In this section we present the results of solving the two-dimensional spring-mass system
numerically (using matlab) on a lattice of size MS × NS , with MS > 100 and NS � 10. We
aim to verify that the shape and velocity of the stationary and moving waveforms in the main
chain and two side chains predicted by our asymptotic method are long-lived in numerical
simulations of the system.

For initial conditions we use the asymptotic expressions generated in the previous section,
putting (um,0, vm,0) on the line n = NS/2 and (um,±1, vm,±1) on the lines n = NS/2 ± 1. By
introducing the variables Rm,n = dum,n/dt and Sm,n = dvm,n/dt , we convert the systems of
second-order ordinary differential equations for üm,n and v̈m,n into an equivalent first-order
system. We apply the periodic boundary conditions

um,NS+1(t) = um,1(t), um,0(t) = um,NS
(t),

uMS+1,n(t) = u1,n(t), u0,n(t) = uMS,n(t),
(3.1)

and similarly for vm,n to the discretized system.

12
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We define the energy in one cell of lattice, em,n, by taking the summand of the Hamiltonian
(2.5) (see the appendix for full details). Moments of the cell energy, hq, and the position of
the breather, (m, n) = (X(t), 0), are then given by

X(t) = h1

h0
, where hq =

∑
m

mq(em,0 + 2em,1) (3.2)

(the factor of 2 in hq accounts for the two side chains having equal energy).
To describe the shape of the breather, we introduce its width in the m-direction, defined

by W 2
mbr = ∑

m(m − X(t))2(em,0 + 2em,1)/h0 or

W 2
mbr = h2

h0
− h2

1

h2
0

, (3.3)

and its width in the n direction, defined as W 2
nbr = ∑

m,n n2em,n/h̃0 or

W 2
nbr = h̃2

h̃0
− h̃2

1

h̃2
0

, where h̃q =
∑
m,n

nqem,n, q = 0, 1, 2. (3.4)

These definitions are motivated by the statistical variance, where the relative energy density
em,n

/ ∑
j,k ej,k is treated as a probability density function.

We use Wmbr and Wnbr to quantify the distortion suffered by the breather if the profile
changes over time. Furthermore, to determine whether the breather loses energy or simply
modifies its shape from the approximation used as initial conditions, we also measure the
energy localized near the breather, Ebr:

Ebr =
X(t)+δm∑

m=X(t)−δm

NS/2+δn∑
n=NS/2−δn

em,n. (3.5)

We pick values δm and δn depending on the lattice sizes (typically δm = M/4 and δn = NS/4).

3.2. Stationary breather with � � O(1)

First we focus on stationary breather solutions (k = π ) for the parameters h = 0.3, ε = 0.03,
A = 1.0, a = 0.0, b = −0.64, λ = 0.8 and � = 3.0, in a lattice of size MS = 130, NS = 10
(1 � m � MS , 1 � n � NS). Since solution (2.9)–(2.11), or equivalently (2.32) and (2.33), is
invariant under translations of a discrete number of lattice sites, we move the breather so that
it is centred at m = MS/2, n = NS/2. In this case, the temporal frequency of the carrier wave
is ω = 3.6056, from which it follows that the period of oscillation is T = 2π/ω = 1.7426
and, by solving (2.37), γ = 0.04. For these parameter values, we illustrate the breather
displacements in the whole lattice in figure 3.

Figure 3 shows the breather initially situated in the centre of the lattice. After the breather
has completed 57 oscillations, it remains highly localized without significant spreading in
any direction. In 66 oscillations, the numerically computed value of the main-chain energy
(given by (A.1)) reduces from H0,t=0 = 1.4945 to H0,t=115 = 1.4321—a small change of
�H0/H0 = −4%. The computed value H0 = 1.4945 is a good match to our asymptotic
estimate of 1.4951 given by (2.47); similar agreement holds for the side chains also, with
the computed value (given by (A.2)) and asymptotic estimate (given by (2.49)) of H1 being
0.0240 and 0.0243 respectively. After 66 oscillations, H1 rises to 0.0262—an increase of
�H1/H1 = 10%.

To determine whether a breather continuously loses energy or suffers an initial transient
change in shape without losing energy, we focus on the energy in the central part of the lattice,
Ebr (given by (3.5) with the sum taken over 100 � m � 300 and 3 � n � 7) and investigate

13
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Figure 3. Illustration of a stationary breather in the square lattice for large �. The lattice node
displacements parallel (u) and perpendicular (v) to the direction of motion of the main chain are
shown. (a) u at t = 0 and (b) v at t = 0. See section 3.2 for further details.

the widths of breather in the m- and n-directions as defined by (3.3) and (3.4), respectively.
The energy plot shown in figure 4(a) shows an extremely small variation (around 10−9) as the
system is integrated from t = 0 to t = 700. This is of magnitude similar to the accuracy of
the numerical scheme used. The total energy of the system does not fluctuate significantly,
that is, �H/H = 8.8501 × 10−7.

However, the graphs of breather width against time (figures 4(b) and (c)) show that the
breather gets slightly wider in the m-direction and significantly wider in the n-direction as
time progresses. At t = 0, the breather width in the m-direction is 28.9709 and only 0.0596
in the n-direction; 700 time units later, the corresponding values are Wmbr = 29.1625 and
Wnbr,t=700 = 0.7763. We observe a slow steady widening of the breather in the m-direction and
a more significant widening in the n-direction, though it appears that this might be saturating
at larger times and approaching a steady state.

3.3. Moving breather with � � O(1) and k = 2.5

We now present a simulation of a moving breather with lattice size MS = 300, NS = 10.
For this, we choose wavenumber k = 2.5, with the remaining parameters h = 0.3, ε = 0.03,
A = 1.0, a = 0.0, b = −0.55, λ = −0.8 and � = 2.5. Here, the breather frequency is
ω = 3.1388, and hence the period is T = 2.0018 with the corresponding value for γ being
0.045 (by (2.37)). Hence, the velocity prediction (2.14) is vasy = −0.1907.

The profile of the initial breather, which is located at the centre of the lattice, is shown
in figures 5(a) and 6(a). At time t = 0, the numerically computed value of the main-
chain energy (H0, given by (A.1)) is close to 0.6213, while our asymptotic estimate of H0

as given by (2.47) is 0.6214; thus, there is only a tiny change in the computed value with
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Figure 4. Illustration of how the energy Ebr (3.5) localized at the breather changes over time, and
how the widths Wmbr (3.3) and Wnbr (3.3) of the breather in the m- and n-directions change from
t = 0 to t = 700 when � is large. (a) Central area energy from t = 0 to t = 700, (b) width in the
m-direction from t = 0 to t = 700 and (c) width in the n-direction from t = 0 to t = 700. See
section 3.2 for more details.

�H0/H0,t=0 = 1.6095 × 10−4. The side chain shows even better agreement where both the
computed value and asymptotic estimate give H1 = 0.0012. Figures 5(b) and 6(b) illustrate
how the breather has moved along the m-direction at t = 49.96, T = 100 s. We can see
that the general shape of the longitudinal displacement u does not change much compared
to the initial time, but the lateral displacement v is elongated in the n-direction, showing
some shedding of radiation. Nevertheless, the breather remains well localized in the lattice.
Figures 5(c) and 6(c) show the breather at t = 99.91, T = 200. Both u- and v-components
have now spread a little further in the n-direction, albeit at a low level.

The numerically computed value for the central chain energy, H0 = 0.5350, is still of
the same order as the initial value. The corresponding value for the side-chain energy is
H1(t = 200) = 0.0444, which implies that the central chain of the lattice has lost energy to
the side chains as the breather moves. Figures 5(d) and 6(d) show the breather approaching
the front edge of the lattice. Although the breather continues to spread slowly as it propagates,
it remains well localized after 150 oscillations.

To determine the breather’s velocity, we plot position against time (a straight line, not
shown) and use its gradient to find the numerical velocity vnum = −0.1899. The percentage
difference from the asymptotic estimate v = −0.1907 (given above) is �v/vnum = 0.42%—a
close match. Figure 7 shows how the width of the breather changes over time in both m-
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Figure 5. A moving breather in the square lattice, with k = 2.5: (a) um,n at t = 0; (b) um,n at
t = 49.95T = 100; (c) um,n at t = 99.91T = 200; (d) um,n at t = 149.87T = 350. See section
3.3 for more details.

and n-directions. The breather slowly widens in the m-direction from a width of 15.8897 to
16.2033, over 350 time units—a change of 2%. The increase in the width of the breather in
the n-direction is more significant: it grows from 0.0647 to 0.5741. However, if we define
a box of length 100 in the m-direction and 5 in the n-direction, centred on the breather, and
ask how much of the system’s energy is within this box, the quantity Ebr, we find a change
of only 3 × 10−6 (see (3.5) with δm = 50 and δn = 2; the value is Ebr ≈ 0.62). Such a
small difference suggests that it is due to the shape of the breather changing rather than to
the breather shedding delocalized radiation to the rest of the lattice. This result supports the
proposal that the breather mode is long-lived.

3.4. Moving breather with � � O(1) and k = 0.5

In the previous section, we presented an example of a moving breather with k > π/2, that is,
to the right of the non-existence gap in figure 2; here we show another simulation of a moving
breather, this time with k < π/2, by choosing k = 0.5. We use h = 1.0, ε = 0.03, A = 1.0,
a = 0, b = −1.0, λ = −1.0 and � = 3.0. The breather frequency is ω = 3.0405, and hence
the period of oscillation is T = 2π/ω = 2.0665, and solving (2.37) we find γ = 0.0543. We
simulate a lattice of size MS = 700, NS = 10.

Figures 8(a) and (c) show the breather initially located at the centre of the lattice, with a
localized structure. Figures 8(b) and (d) show the breather at t = 169.37T = 350, where it has
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Figure 6. A moving breather in the square lattice, with k = 2.5: (a) vm,n at t = 0; (b) vm,n

at t = 49.95T = 100; (c) vm,n at t = 99.91T = 200; (d) vm,n at t = 149.87T = 350. See
section 3.3 for more details.
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Figure 7. Plot of the breather width against time: (a) in the m-direction and (b) in the n-direction,
for a moving breather with k = 2.5. See section 3.3 for more details.
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Figure 8. Displacements plotted against position (m, n) in the square lattice at various times, for
a moving breather with k = 0.5: (a) um,n at t = 0, (b) um,n at t = 350, (c) vm,n at t = 0 and (d)
vm,n at t = 350. See section 3.4 for more details.

travelled forward along the m-direction. The breather has broadened slightly in the n-direction,
but remains localized. At t = 0, the computed main-chain energy H0 = 2.1473 (from (A.1)) is
close to our asymptotic estimate of 2.1474 (obtained using (2.47)). At t = 350, the computed
central chain energy is H0 = 2.1382, i.e. there is a relatively small decrease. However,
the value of the side-chain energy shows a considerable increase, from H1(0) = 0.0063 to
H1(t = 350) = 0.0109. This shows a transfer of energy from the central chain to the side
chains over time. However, even after 350 time units, H1 	 H0 so we observe extreme
localization in the n-direction, and it appears that our predicted shape of the breather in the
m-direction is accurate.

Figure 9 shows the profile of the main chains at t = 0 and at t = 169.37T = 350. The
breather initially lies at the lattice centre (figures 9(a), (c) and (e)); in figures 9(b), (d) and (f ),
we see that it has moved significantly to the left, by about 50 lattice sites. This simulation
gives a velocity of vnum = −0.1574, very close to our asymptotic estimate of vasy = −0.1577
obtained from (2.14), the difference being only �v/vnum = 0.19%. The width in the m-
direction increases a little from Wmbr = 58.4695 at t = 0 to 58.5001 at t = 350. The width in
the n-direction rises from 0.0767 at t = 0 to 0.1004 when t = 350; this increase is again more
significant. Defining a box of width 300 in the m-direction and 5 in the n-direction, centred
on the breather’s position, we measure the energy Ebr in the box: the variation between t = 0
and t = 350 s in Ebr is 10−6. Such a small difference strongly supports the long-lived nature
of the breather mode since it suggests that the variations in the width noted above are initial
transient changes of the breather shape, and not an instability by which the breather loses
energy to delocalized radiation (which would give a flux of energy to the region outside the
box).

18



J. Phys. A: Math. Theor. 42 (2009) 355207 X Yi et al

100 200 300 400 500 600 700

−0.05

0

0.05

m

u m
,0

(a) u
m,0

for k=0.5 at t=0

100 200 300 400 500 600 700

−0.05

0

0.05

m

u m
,0

(b) u
m,0

for k=0.5 at t=350

100 200 300 400 500 600 700

−3

−2

−1

0

1

2

3
x 10

−3

m

u m
,1

(c) u
m,1

 for k=0.5 at t=0

100 200 300 400 500 600 700

−4

−2

0

2

4

x 10
−3

m

u m
,1

(d ) u
m,1

 for k=0.5 at t=350

100 200 300 400 500 600 700

−8

−7

−6

−5

−4

−3

−2

−1

x 10
−5

m

v m
,1

(e) v
m,1

 for k=0.5 at t=0

100 200 300 400 500 600 700

−8

−6

−4

−2

0
x 10

−5

m

v m
,1

(f ) v
m,1

 for k=0.5 at t=350

Figure 9. Plots of displacements of the three main chains (um,0, um,1 and vm,1) against lattice site
m at t = 0 and t = 350, for k = 0.5. See section 3.4 for more details.

3.5. Stationary breather with O(1) parameters

The numerical results presented in the previous sections all feature parameters with large
spring constant � (see (2.1)), since this choice guarantees that the parameter γ , defined by
(2.37), is small. We now present results of a simulation in which all the parameters are O(1).
We choose k = π , h = 0.5, ε = 0.03, A = 1.0, a = 0.0, b = 0.2, λ = 1.0 and � = 0.5 and
a lattice of size MS = 120, NS = 10. (Note that we still require 0 < ε 	 1 in order for our
three-chain asymptotic analysis to be valid.) In this case, the temporal frequency of the carrier
wave is ω = 2.0616, the period of oscillation is T = 2π/ω = 3.0478 and solving (2.37) we
find γ = 0.056—still relatively small.

The breather is initially situated at the centre of the lattice as shown in figures 10(a)
and (c), and the corresponding total energy is H = 0.157657. Figures 10(b) and (d) show
the breather after approximately 30 oscillations (t = 29.53T = 90). The total energy does
not alter significantly over this time: �H/H = 6.3429−6. The final main-chain energy is
H0(t = 90) = 0.1558, which is again close to the initial value H0(t = 0) = 0.1567 (the
change being �H0/H0 = 0.0058). Our asymptotic estimate of H0, given by (2.47), is 0.1568.
The energy in either side chain is initially 4.5446 × 10−4 at t = 0 (in good agreement with the
t = 0 asymptotic estimate of H1 = 4.5150 × 10−4), but at t = 90, H1 = 8.9485 × 10−4—a
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Figure 10. The displacements and energy density of a stationary breather in the square lattice,
plotted as a function of lattice position (m, n), at times t = 0 ((a), (c), (e)) and t = 90 ((b), (d),
(f )). (a), (b) Longitudinal displacements um,n; (c), (d) vertical displacements vm,n; (e), (f ) cell
energy density em,n. See section 3.5 for more details.

significant increase. Nonetheless, figures 10(e) and (f ) illustrate that the breather does not
lose its localized structure even after 30 oscillations.

To investigate the shape changes further, we run the simulations to longer times and plot
the breather widths in m- and n-directions, Wmbr and Wnbr, using a lattice of size MS = 200 and
NS = 10. Figure 11 shows that both widths increase monotonically and significantly, with the
n-width in particular growing by almost a factor of about 6.5 over the long-time simulation.
At t = 0, Wmbr = 9.2873 and Wnbr = 0.0780, and after approximately 230 oscillations the
corresponding values are 11.3651 and 0.5064, respectively.

The variation of the energy, Ebr, in a box of size 100×5 is also small in this case: the
initial value of 0.16 decreases by only 0.0038 over the time interval 0 < t < 700. Even
though this variation is small, and such a breather may be termed long-lived, it is large enough
to state that such a breather is not an exact solution of the lattice. Our earlier simulations of
moving breathers with � � 1 showed variations in Ebr of O(10−6) for moving breathers and
even smaller variations for stationary breathers.

3.6. Moving breather with O(1) parameters and k = 0.5

In this section, we focus on the breather with k = 0.5, ε = 0.03, A = 1.0, in a lattice with
� = 1.0, h = 1.0, a = 0.0, b = −1.0, λ = −1.0 and of size MS = 500, NS = 10. The
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Figure 11. Plot of the breather widths Wmbr and Wnbr in m- and n-directions against time, for
k = 0.5 and � = 0.5. See section 3.5 for more details.
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Figure 12. Displacements as a function of lattice position (m, n), for moving breather in lattice
with � = 1 = O(1) and k = 0.5. (a) um,n at t = 0, (b) um,n at t = 180, (c) vm,n at t = 0, (d) vm,n

at t = 180. See section 3.6 for more details.
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Figure 13. Breather widths as a function of time for the moving breather with � = 1 and k = 0.5:
(a) Breather width Wmbr in the m-direction and (b) breather width Wnbr in the n-direction. See
section 3.6 for more details.

asymptotic estimate of velocity given by (2.14) is v = −0.4297, and the breather frequency
is ω = 1.1157, giving an oscillation time period of T = 5.6315.

Figures 12(a) and (c) show the breather at t = 0, while figures 12(b) and (d) show the
breather at time t = 180, after almost 32 oscillations. Clearly, the v-component of the breather
has been deformed more significantly in the n-direction than in the m-direction (or than the
u-component in either direction). However, the breather retains its localized structure since
the u-component of the central chain dominates (um,0 � vm,1). The difference between the
asymptotic (2.14) and numerical velocities (vnum = −0.4425) is 2.28%.

At time t = 0 the main- and side-chain energies are H0 = 0.2522 and H1 = 9.5317×10−4,
close to the asymptotic estimates of H0 = 0.2523 and H1 = 9.4329 × 10−4, respectively.
At t = 180, H0 = 0.2491 which is only slightly less than the value at t = 0; however,
H1 = 0.0024 which is larger than the value at t = 0 by a factor of about 2.5. Measuring the
energy Ebr in a box of length 100 and width 5 centred on the breather, we find Ebr = 0.18 at
t = 0, and this quantity decreases in value by only about 0.0015 units over the period of the
simulation (0 � t � 300)—a loss of less than 1% over more than 53 oscillations.

Figure 13 shows the m-width of the breather Wmbr increasing a little over the simulation:
initially it grows very slightly and then stays fixed for a time, before increasing at an
accelerating rate. At t = 0, Wmbr = 50.85, and (approximately) 36 oscillations later,
Wmbr = 52.57. n-width Wnbr exhibits much more unusual behaviour, generally increasing but
undergoing relatively large oscillations. At t = 0, Wnbr = 0.088, increasing to Wnbr = 0.1917
by the time t = 200.

4. Conclusions

In this paper, we have applied asymptotic methods to find approximations to discrete breathers
in a two-dimensional spring-mass lattice system (Fermi–Pasta–Ulam–Tsingou (FPUT) or
Klein–Gordon (KG) type). In our model, the vibration has two degrees of freedom at each
lattice site. It makes this model considerably more complicated than the scalar one-component
lattice analysed in some previous papers (for example, [11]). We assume that the amplitude
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of a breather’s disturbance is largely confined to three main chains and that motion in the
remaining chains is too small to affect significantly our calculations. Thus, we focus on
the coupled motion of the central chain and two side chains, assuming that the motion of these
three main chain in isolation is sufficient to describe such breathers. We simplify our approach
by assuming that the motion in the two side chains is symmetric, and so described by only two
variables, and the motion in the central chain is in one direction. Thus, we obtain a system of
three coupled one-dimensional lattice equations.

Marin et al [21, 22] have performed numerical investigations of breather dynamics in
such two-dimensional lattices. Their results suggest that moving breather modes exist and
that the lattice exhibits a strong directional preference whereby breathers can only move along
symmetries of the lattice and in no other direction.

We use the discrete multiple-scales method to reduce the equations of motion for the
three main chains in this FPUT–KG lattice to a system of two nonlinear Schrödinger equations
((2.24) and(2.25)). Requiring this system to have similar solutions leads to the identification
of an important correlation parameter γ (2.36), between the leading order functions in the
solution ansatz for the central chain and side chain.

The ansatz used herein is quite distinct from that used by Butt and Wattis for the one-
component, two-dimensional lattice; in [5, 6] they assumed that the stationary breather was
circularly symmetric and that, following a simple rescaling, moving breathers had a similar
symmetry, with amplitude being dependent on a (scaled, vector) displacement from the mode
centre in the two lattice directions. There, moving breathers were elongated perpendicular to
the direction of travel. Here we find elongated moving breathers elongated in the direction of
travel (as well as elongated static breathers). Thus, we note significant differences in behaviour
between scalar- and vector-valued lattices.

In this paper, we have built a typical nonlinear mechanical (vector-valued) lattice and
shown that a breather mode exists, is stable and relevant to the long-time dynamics of the
lattice. Cuevas et al [11] have investigated localized oscillations in both ordered and disordered
two-dimensional scalar lattices (discrete breathers and Anderson modes). They have also
analysed the bifurcations which lead to their creation. It would be interesting to see the
results of a similar study on the more complicated vector-valued lattice equations that we have
analysed here. As noted in the above paragraph, there may again be significant differences
between scalar and vector lattices.

In sections 2.6 and 2.7, we investigated the region where bright soliton solutions exist for
the two-dimensional mechanical (two-component, vector) FPUT–KG lattice with a polynomial
potential. In our analysis we assume the correlation parameter γ to be a small real number, and
we also consider � � 1 to allow a theoretical approach to calculating explicit approximations
to the breathers. As well as obtaining expressions for the breather energy, we are able to
illustrate the regions where bright soliton solutions exist (figure 2) in the two-dimensional
spring-mass system.

Numerical simulations presented in section 3 reveal interesting properties of breathers. For
� � 1, the asymptotic approximation to breathers is good: we observe that their evolution
is almost lossless and they are localized in both directions, extremely so in one direction.
Moving breathers are extremely localized perpendicular to their direction of travel. For
� = O(1), the simulations show much greater modifications to shape over time, particularly
in the rate at which a breather’s width increases. In addition, we see a noticeable amount of
energy left behind at the initial position of the breather, which will spread out over longer
timescales. This is particularly notable in the case of wavenumber k < π/2. This shows that
the asymptotic approximation is not so good in the case � = O(1) as when � � 1. The
results of our asymptotic calculations and simulations support and justify the term ‘quodons’
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for these breathers which are dominated by motion in just a few chains and by motion in one
direction (the u-component). We have also compared the breather’s velocity and the leading
order values of the energy, H0, from numerical calculations and asymptotic calculations. The
results show a good match over a range of parameters.

We have observed that in moving breathers, particularly for � = O(1), energy is slowly
transferred from the central chain to the side chains as the wave passes though the two-
dimensional spring-mass lattice system. Thus it would appear that, while the moving breather
may be a relatively long-lived mode, it is not an exact solution.

Marin et al [22, 23] have already given some convincing numerical evidence that moving
breathers exist in hexagonal and square lattices and that these breathers travel only along
lattice directions. Hence, in the near future, we aim to use this triple chain approximation to
study breathers in the hexagonal FPU–KG lattice.
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Appendix A. Energy definitions

We define the main-chain energy (that is, the chain n = 0) by

H0 =
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(see [7]). Again using the symmetry, we deduce that the energies of the two side chains are
identical, that is, H−1 = H1. Following [7], or using the assumption that only um,1, vm,1, um,0

are significant, we find the expression for the side-chain energy:
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In order to determine the position of the breather, we define the ‘cell energy’ em,n by

em,n = 1
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Hence the total energy of the system is given by H = ∑
m

∑
n em,n, and in the three-chain

approximation we have H = H0 + 2H1.
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